
m Fermi National Accelerator Laboratory 

FER’IILA+?Ui+91/353-T 
(Revised) 

On the Viability of Lattice Perturbation Theory 

G. Peter Lepage 
Newman Laboratory of Nuclear Studies 
Cornell University, Ithaca, NY 14853 

and 

Paul B. Mackenzie 
Theoretical Physics Group 

Fermi National Accelerator Laboratory 
P. 0. Box 500, Batavia, IL 60510 

September 8, 1992 

Abstract 

In this paper we show that the apparent failure of lattice perturba- 
tion theory to account for Monte Carlo measurements of perturbative 
quantities nsults from choosing the bare lattice coupling constant aa 
the expansion parameter. Using instead “renormalized” coupling con- 
stants defined in terms of physical quantities, like the heavy-quark 
potential, greatly enhances the predictive power of lattice perturba- 
tion theory. The quality of these predictions is further enhanced by 
a method for automatically determining the coupling-constant scale 
most appropriate to a particular quantity. We present a mean-field 
analysis that explains the large renormalizationa relating lattice quan- 
tities, like the coupling constant, to their continuum analogues. This 
suggests a new prescription for designing lattice operators that are 
more continuum-like than conventional operators. Finally, we provide 
evidence that the scaling of physical quantities is asymptotic or pertur- 
bative already at B’s as low as 5.7, provided the evolution from scale to 
scale is analyzed using renormalized perturbation theory. This result 
indicates that reliable simulations of (quenched) QCD are possible at 
these same low D’s, 
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1 Introduction 

In principle, nonperturbative lattice simulations allow the calculation of 
any quantity in QCD, without recourse to perturbation theory. In prac- 

tice, however, perturbation theory is important to lattice QCD in several 
ways. Firstly, it provides the essential connection between lattice simula- 
tions, which are most effective for low-energy phenomena, and the high- 
energy arena of perturbative QCD phenomenology. This is accomplished 
through such constructs as the operator-product expansion. Secondly, per- 
turbation theory can account for effects on low-energy phenomena due to the 
physics at distance scales shorter than the lattice spacing. Provided the lat- 
tice spacing a is small enough, systematic errors of order IZ and higher can be 
removed from the theory by perturbatively correcting the action and oper- 
ators that define the lattice theory. This approach provides a cost-effective 
alternative to simply reducing the lattice spacing when systematic errors 
must be removed. Finally, lattice simulations and perturbation theory must 
agree for short distance quantities, where both approaches should be reli- 
able, if we are to have confidence in simulation results for nonperturbative 
quantities. 

It is disturbing therefore that Monte Carlo estimates for most short- 
distance quantities seem to agree poorly with perturbative calculations. An 
example is the vacuum expectation value of the lattice gluon operator U in 
Landau gauge. This is the lattice analogue of the expectation value (AZ) of 
the square of the bare gauge field A,. Since (A:) is quadratically divergent, 
the loop integral in first-order perturbation theory is dominated by momenta 
of order the cutoff, and perturbation theory should be effective for cutoffs 
of order a couple of GeV or larger. However, the perturbative result, when 
expressed in terms of the bare coupling constant oh, G gLJ4r of the lattice 
theory, is 

(1 - jTrU)pT = 0.97 alar = .078 (1) 

at p E 6/g: L = 6.t’ 
turbative rklt, 

This is almost a factor of two smah than the nonper- 

(1 - ~TIC&~ = 0.139, (2) 

obtained from Monte Carlo simulations.[l] The coupling constant is quite 
small here (ol., = 0.08), and the loop momenta typically large (q z r/a z 

“0 is the parameter used to specify the bare coupling constant in the standard lattice 
action for QCD. 
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6 GeV). Perturbation theory ought to work; instead it seems to fail com- 
pletely. Discouraging results such as this have arisen in a wide range of 
lattice calculations. leading to considerable pessimism about the viability of 
lattice perturbation theory at moderate fi’s. 

In this paper we show that although these facts are true they are mis- 
leading. We find that the key problem with previous calculations of this 
sort is in the choice of the expansion parameter for the perturbation series: 
alat is generally a very poor choice. There is no compelling reason in a field 
theory for using the bare coupling constant as the expansion parameter in 
weak-coupling perturbation theory. Standard practice is to express pertur- 
bation series in terms of some renormalized coupling constant, one usually 
defined in terms of a physicai quantity. Indeed the renormalized coupling is 
usually a running coupling “constant” whose value in a particular expansion 
depends upon the length scales relevant in that process; there is no single 
expansion parameter for .sJl series. The perturbative quantities important in 
lattice QCD generally involve lengths of order the lattice spacing a, and so 
one might expect little renormalization of the coupling from its bare value. 
However this argument, the usual rationale for using ala,, ignores the pos- 
sibility of a large scale-independent renormalization of the bare coupling. 
We find that just such a renormalization does occur in lattice QCD, making 
expansions in a~.~ useless except at very large p’s. 

Faced with large renormalizations, we must replace orst by a renormal- 
ized coupling. It is straightforward to reexpress lattice perturbation ex- 
pansions in terms of any of the expansion parameters that have proven 
effective in continuum perturbation theory-for example, a&q) with some 
physically motivated momentum q. When this is done, we find that lattice 
perturbation theory becomes far more reliable. In fact, perturbation the- 
ory becomes about as effective for lattice quantities as it is for continuum 

quantities at comparable momenta.(s 
The large renormalization of 01~~ is due to the structure of the link 

operators from which the theory is built. The nonlinear relation between the 

“This situation in lattice theory par.&& that ior dimensional regularization. the other 
widely used regularor in QCD. Early calculations using dimensianal regulatizalian were 
expressed in terms of the minimal-subtraction coupling constant (IMS, the ‘natural” def- 
inition for that regulator. The results usually looked nonsensical. with large coefficients 
appearing in the higher-order terms of mo8t expansions. Consequently a modified minimal- 
subtraction scheme. the m scheme, wm introduced for defining the coupling constant. 
This srhenw while rnn~*what~ arhitnrv did result in reawnahlp wrtltrbxtion c&es. and 
has since become standard. An analogous shift, away from LII.,, is required in the study 
of lattice quantities. 
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link operator and the gauge field leads to large renormalizations of lattice 
operators relative to their continuum analogues, and these in term result 
in large shifts of the coupling constants in the action. In this paper we 
present a simple nonperturbative procedure for removing the bulk of these 
large “tadpole” renormalizations from gluon and quark operators. This 
procedure elucidates the problems with alar. More importantly, perturbative 
expansions of the renormalization constants that relate quark currents and 
other composite operators on the lattice to their continuum counterparts 
become far more convergent once the tadpole contributions are removed. 

In Section 2 of this paper we discuss the symptoms that result from a 
poor choice of expansion parameter in a perturbation series. We show how 
these symptoms afflict lattice expansions expressed in terms of olatr and we 
suggest a new, physically motivated procedure for renormaiizing lattice per- 
turbation theory.c3 In Section 3, we compare predictions from our renormal- 
ized perturbation theory with nonperturbative results obtained from Monte 
Carlo simulations. We examine quark masses, (TrU), and a variety of Wil- 
son loops and Creutz ratios. We find impressive agreement for aJl quantities, 
with no tuning of the theory, even at /3’s as low as 5.7. In Section 4 we discuss 
the origins of the large renormaiizations that arise when comparing lattice 
quantities with their continuum analogues. We develop a new prescription 
for building lattice operators that are much closer in behavior to their con- 
tinuum counterparts; in particular the large renormalizations disappear.c4 
The success of renormalized perturbation theory at low p’s suggests that 
the evolution of the coupling constant with lattice spacing is also perturba- 
tive and scaling asymptotic at these p’s. This important issue is discussed 
in Section 5. Finally, in Section 6, we summarize our conclusions, stress- 
ing their implications concerning the reliability of simulations on relatively 
coarse (and therefore much less costly) lattices. 

2 Renormalized Lattice Perturbation Theory 

2.1 A poor expansion parameter 

If an expansion parameter agood produces well behaved perturbation se- 
ries for a variety of quantities, using an alternative expansion parameter 
au P ‘xs,,d( 1 - 10,000(1s,,d) will lead to second-order corrections that 

“For a discussion of these issues in the context of dimensionally rqularized QCD per- 
turbation theory, see [2]. A preliminary version of our lattice results is in [3]. 

(‘A preliminary version ol this analysis is published in [4]. 
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are uniformly large, each roughly equal to 10,000 (rbd times the first order 
contribution. Series expressed in terms of abad, although formally correct, 
are misleading if truncated and compared with data. The signal for a poor 
choice of expansion parameter is the presence in a variety of calculations 
of large second-order coefficients that are alI roughly equal relative to first 
order. 

A large coefficient appears in the first second-order calculation done on 
the lattice: the calculation of the gluonic three-point function used to relate 
the A parameter of the bare lattice coupling alar to the A’s of various con- 
tinuum coupling constants.(5,6] The coupling constant a(q)zm, defined in 
terms of this three point function at momentum q, has the expansion 

491,,, = wat { 1 + ~d~o~*(~l~9)2 + 5.419)}, (3) 

where /3u = 11/4x. Naively, one expects that a(q = r/a),a;, e alat, since 
rr/a is roughly the largest momentum on the lattice. The constant 5.419 
spoils the equality; it results in very large ratios between continuum and 
lattice h’s. 

Since continuum quantities are usually well behaved when expanded in 
terms of a(q),ym, it is immediately obvious that most other continuum 
quantities will have a similar constant term when expressed in terms of a~,~. 
For example, the heavy quark potential V(q) at momentum transfer Q has 
the expansion[7] 

V(9) = - “~‘al {1+~,.,(,,*(~)‘+4.70)} (4) 

where Cf = 4/3 is the quark’s color (Casimir) charge. Similar results hold 
for the e’e- hadronic cross section, derivatives of moments for deep inelastic 
ep scattering, etc. 

A crucial point is that a similar constant term appears in the expansions 
for all short-distance lattice quantities that have been studied. For example, 
the corrections to the heavy-quark potential as a function of distance have 
the form[8] 

V(R) = - + {I.~,.,(,,*(~)‘+C(~,~l)}. (5) 

where C(H/a) for various values of R is given in the following table: 
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R/a 1 2 4 6 00 
C(R/a) / 5.5 5.5 5.6 5.711 

(The constant for R = cc can be obtained by Fourier transforming the 
equation for V(q) above.) Note that the constants C(R/a) at finite R vary 
little from the one at R = m. This is expected since these corrections are 
dominated by quadratically UV divergent tadpole loops that are insensitive 
to the external momenta. 

As we show later, similar terms are present in Wilson loops and Creutz 
ratios. Thus the pattern of second-order coefficients for lattice quantities 
strongly suggests that olsl is a poor choice of expansion parameter. 

2.2 A better expansion parameter 

To define an improved (renormalized) expansion parameter, we must both 
choose a definition of the running coupling a.(q) (“fix the scheme”) and 
specify how the scale q of the coupling is to be chosen (“set the scale”). 
It is natural and convenient in perturbation theory to tie the scale of the 
coupling to that of the loop momenta circulating in the Feynman diagrams. 
Thus, we want to define a,(q) so that it approximates the coupling strength 
of a gluon with momentum q. c5 It is also important that a,(q) be defined in 
terms of a physical quantity, so as to avoid confusions, such as that between 
the MS and m schemes, that are artifacts of ;rrbitrary definitions. 

2.2.1 Fixing the Scheme 

OS the many physical quantities one might use to define an a,(q), the heavy- 
quark potential V(q) is among the most attractive.(2] Typically there is an 
integral over the momentum of the leading-order gluon, but the gluon in 
V(q) has only momentum q. Thus it is particularly easy to tie the coupling 
constant’s argument to the gluon’s momentum for this quantity: we define 
ov(q), the coupling strength of a gluon with momentum q, such that 

(‘It is natural in a gauge theory to associate the scale of the coupling with the glum’s 
momentum since every g in the theory is associated with a particular A,, by gauge invari- 
ance. This mwciation allows us to set the scale in a gauge invariant way. 
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with no higher-order corrections. We can easily relate av to the bare lattice 
coupling constant alal since V(q) has been computed in terms of aIs, (Eq. 4): 

~,a‘ = w(q) { 1 - cry (PO In(a/aq)’ + 4.702)) + CJ(o$). (7) 

for SU(3) color with no light-quark vacuum polarization. With this expres- 
sion, any one-loop or two-loop lattice expansion can be reexpressed as a 
series in a”. The q dependence of ay is given by the usual formula, 

a;‘(q) = a, In(q/A”)* t Lh/Po Inln(p/A”)* + U(uv(q)), (8) 

where /30 = 11/4n (as before), /3, = 102/16a’, and 

Av = 46.08&, (9) 

is the scale parameter for this scheme. The scale parameter Alar for ulst is 
defined implicitly by 

a1.i = h In(l/aAl,,)2 +Pl/h Inln(l/aAl*t)* t “.. (10) 

Note that am(q) is numerically fairly close to av(q), and thus is another 
useful alternative to alat. In this case, 

alar = G(q) { 1 - am (Po ln(r/aq)2 + 3.880)) + 0(+&s), (11) 

and the scale parameter is 

Am = 28.81 Alar. (12) 

2.2.2 Setting the Scale 

The coupling constant o’v is defined so that av(q’) is the appropriate ex- 
pansion parameter for a process in which the typical gluon momentum is q’, 
For many processes it is possible to guess q’ fairly accurately. For example, 
power-law UV divergent quantities like (Trll) are controlled by the lattice 
modes with the highest momenta, and so one expects q’ x ~/a. Although 
such guesses are often sufficient, there is a simple automatic procedure that 
takes the guessing out of q’. Such a procedure has proven invaluable in our 
systematic study of the reliability of perturbation theory. 

Consider a one-loop perturbative contribution in our scheme: 

I = Wq’) / &f(Q) (13) 
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where q is the gluon’s momentum. The natural definition of q’ would be 

w(f) /&f(q) = / & w(q)f(q) (14) 

except that the second integral is singular. The singularity is due to the 
pole in the coupling constant at q = Av. This pole is an artifact of the 
all orders summation of perturbative logarithms that is implicit in the for- 
mula for av(q) (Eq. 8). The singularity does not arise in any finite order 
of perturbation theory, as may be seen by replacing the running coupling 
constant w(q) in Eq. 14 by its expansion in terms of the coupling constant 
renormalized at some fixed scale p: 

w(9) = MPH 1 + hln(dCc)2av(P) + (Po~(91P)2w(P))2 + . . .I (15) 

None of these terms separately results in a singularity, but the sum of alI 
terms diverges. 

In fact it is incorrect to sum to all orders since the QCD perturbation 
series is an asymptotic series. The proper procedure is to retain only those 
terms consistent with the accuracy of the rest of the calculation. For our 
purposes we should retain only the first two terms in Eq. 15: 

+77J&f(9) = w(P)pm+ 
00 4~)~ / d% f(q) ln(q/cc)’ + . . . (16) 

Expanding av(q’) in terms of a+) in this equation, we obtain a simple 
definition for q’ (independent of p): 

,ncq.2j ~ Id%/(q) Wq2) 
Idbf(q) 

2.2.3 Summary 

To summarize, our general procedure for analyzing a perturbation series in 
lattice QCD involves replacing alal by czy(q.) using Eq. 7. The scale q’ 
is determined by probing the first-order calculation with factor In q2, as in 
Eq. 17. In calculations that extend through two-loop order, we assume that 
the one-loop q’, determined this way, is also appropriate for the two-loop 
contribution. 

A special feature of expansions in av(q*) is that they are unaffected 
through second order by quark vacuum-polarization insertions in the gluon 
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propagator. All such contributions are automatically absorbed into av(q’), 
by virtue of its definition. As a consequence all of the perturbative ex- 
pansions we use in this paper (second order as well as first) are identical 
in quenched and unquenched versions of QCD when they are expressed in 
terms of av(q.). Only the evolution of av(q) changes: 00 - (11 - {R,)/~A 
and 4, - (102 - 18n,)/16az in Eq. 8 for nf light-quark flavors. The nf- 
independence of (XV expansions leads to an alternative procedure for deter- 
mining q’ that is analyzed extensively, for continuum QCD, in [2]. 

3 Testing Renormalized Perturbation Theory 

Our procedure for defining a renormalized coupling constant with a proper 
scale (Section 2.2) follows solely from known results in lattice perturbation 
theory, without regard to Monte Carlo data. Only now are we ready to 
consider the extent to which our renormalized perturbation theory agrees 
with Monte Carlo simulations of short-distance quantities. 

Having converted all of our perturbative expansions from ulst to ay, we 
need some way of determining values of cry that are appropriate to particular 
simulations. The most straightforward procedure is to measure (1~ in the’ 
simulations.(6 This can be done, for example, by measuring the heavy-quark 
potential, or, more simply, by measuring the trace of the plaquette operator 
UPi, (the 1 x 1 Wilson loop). The improved perturbative expansion for the 
logarithm of TrUPlaq is 

- In(fTrU,l.,) = 4.18879av(3.41/a) (1 - 1.19av t O(a’,)}. (18) 

Given data for this quantity, one can easily solve for av(3.14/a). The cou- 
pling w(q) for other q’s can then be obtained using standard two-loop 
evolution (Eq. 8). We have extracted av(3.41/a) in this way from data for 
quenched QCD at several P’s. The results, evolved down to q = l/a, are 
given in Table 1. We also give values for al,,, and for a&l/a), the latter 
being obtained from the measured nv using the relation 12~ = 0.6252 Av. 

Our choice of - In($TrUPlag) for determining a~ is for convenience; 
we have not attempted to optimize this choice. One could use any other 
short-distance quantity whose av-expansion is known through second order, 

‘6As we discuss in Seccian 4. 01” can alsa be computed directly from o(,., without using 
‘!?!:I: (‘:I:! : !,.!...~ !!y.” .,,, ~ 1(,/< “~^.-“,I,,.” :. ..-,.&..,,I.. I ,,.,. , .I..~ . .,, ,~ .__......, ..~ ~_ .zzz::I::I ~.~ 
particularly at lower d’s, 

_) .I, 
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9 
5.7 
6 

6.1 
6.2 
6.3 
6.4 
9 
12 
18 

-InW,1 w.t om(l/a) av(l/a) 
0.5995 0.0838 0.2579 0.3552 
0.5214 0.0796 0.1981 0.2467 
0.5025 0.0783 0.1860 0.2275 
0.4884 0.0770 0.1774 0.2144 
0.4740 0.0758 0.1690 0.2020 
0.4610 0.0746 0.1617 0.1913 
0.2795 0.0531 0.0815 0.0878 
0.1954 0.0398 0.0532 0.0558 
0.1227 0.0265 0.0317 0.0326 

Table 1: Monte Carlo data for logarithm of the plaquette, together with the 
coupling constant values used in this study 

Other alternatives might be Creutz ratios of small loops, whose perturba- 
tive expansions might be more convergent, or a combination of Wilson loops 
chosen so that potential nonperturbative area-law contributions cancel (eg, 
lnT111~~~ - 4lnTrUl.,). 

Note that, as discussed earlier, the form&used in measuring a~ (Eq. 18) 
.is valid also for unquenched QCD, as are all of the ov expansions that follow. 
Thus precisely the same techniques and tests we use here can be applied to 
the unquenched case. We have not yet done this, but we expect similar 
results. 

3.1 (A;) 

The lattice equivalent of (AZ) is (1 - fTrU), which is given in perturbation 
theory by 0.970,. The one-loop contribution comes from a quadratically 
divergent tadpole graph, and we therefore expect that it is dominated by 
momenta of order the lattice cutoff x/a. Using the procedure of Section 2.2 
we find q’ = 2.80/a. In Fig. 1 we compare perturbative results results for 
(1 - :TrU) with Monte Carlo data(l] at several values of p. We present 
results from perturbation expansions in alar, in our favorite coupling con- 
stant av(q’), and in am(q’). The data agree with perturbation theory to 
within lo-15% for all 0 1 5.7 when cry or UMS is used. Uncakulated terms 
of order a$ or higher in the perturbation theory could easily account for the 
remaining differences; the differences between the oy and oK predictions 
give an indication of how important such terms might be. Of course part 
of the difference between perturbation theory and Monte Carlo might be 
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Monte Carlo 0 

o$l : 
%at x 

0 
0 

x 

I I 

5.6 5.8 6.2 6.4 6.6 
P 

2 
6/d., 

Figure 1: The expectation value of the trace of a link in Landau gauge, 
calculated by Monte Carlo (circles), and in first order perturbation theory 
using for the expansion parameter av(q*) (diamonds), e&q*) (boxes), and 
alal (crosses). 

nonperturbative, particularly at the lowest 0. The data disagree with the 
otat exapnsion by almost a factor of two. 

3.2 Mass renormalization for Wilson quarks 

A famous example of the “failure” of lattice perturbation theory is the cab 
culation of the additive mass renormalization for Wilson quarks. The bare 
mnss in Wilson’s formulation of the lattice quark action is renormalized by 
an additive power-law divergent term. The critical quark mass, for which 
this term is canceled (leaving the quark massless), is given in perturbation 
theory by m,a z I/‘&, - 4 = -5.457aS.(9] (Here, K is the “hopping param- 
eter” used to parameterize the quark mass in lattice gauge theory.) The 
linear divergence in this result suggests that the important momenta here 
are of order x/a. We find q’ = 2.58/a using our procedure (Eq. 17). In 
rig. 2 we cwlpare pauroatlve results Ior 1,~~ ~VILII .uonte Ldrio uatajluj 
at severe) values of 3. Again we see that the data agree with our renor- 
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Monte Carlo 0 
ado’) 0 

% 5 @ : 
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0 0 O 
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I / 
5.6 5.8 

4 : 6/g& 
6.2 6.4 6.6 

Figure 2: The critical quark mass m, for Wilson quarks, calculated by Monte 
Carlo (circles), and in first order perturbation theory using for the expansion 
parameter uv(q*) (diamonds), aw(q*) (boxes), and atal (crosses). 

mabaed perturbation theory to within IO-15% for ah b’s, but disagree with 
perturbation theory using (II., by almost a factor of two. 

3.3 Wilson loops and Creutz ratios 

Aside from the heavy-quark potential and the coupling constant, Wilson 
loops are the only lattice quantities for which two-loop perturbation theory 
has been calculated. Consequently they provide the most stringent tests of 
perturbation theory. Large Wilson loops have badly behaved perturbative 
expansions for a trivial reason: they contain a self-energy contribution pro- 
portional to the length of the loop. For large loops, contributions to this 
self-energy approximately exponentiate, so we expect that the logarithm of 
a Wilson loop is better behaved in perturbation theory than the loop itse1f.t’ 

“Our data confirms that perturbation theory works better for logarithms of the W,, 
than for the W,, themselves. the expansions for the latter Iailing completely for even 
modestly large loops. Curiously the pathologies in the W .,.” expansions seem to cancel 
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Taking Creutz ratios[ll] of Wilson loops further improves perturbation the- 
ory by reducing the effects of both the divergent contributions associated 
with the perimeter of the loop and those coming from the corners of the 
hp. 

For these reasons, we concentrate in this study on the logarithms of small 
Wilson loops and on Creutz ratios x,,,,, defined by 

Xmn 3 -In ( 
wmnwm-1 n-1 
Wmn-,Wm-,n > . (19) 

where W,,,, is one third the expectation value of the trace of the m x n 
planar Wilson loop: 

W,, E +(TrL’,&. (20) 

We compare perturbative predictions with new data generated on a 16’ 
lattice at P’s ranging from 5.7 to 18.1121 We use one-loop and two-loop 
perturbation-theory coefficients computed for a 16’ lattice[8], and include 
the leading-order contribution from the zero mode.[l3] Thus our perturba- 
tion theory is accurate up to uncakulated terms of order o$, and of order 
C&/V, due to the zero mode, where V = 16’ is the volume of the lattice. 
The finite-volume errors becomes significant for larger loops and so we limit 
ourselves to 5 x 5 loops and smaller. 

In Fig. 3 we show results for ,~.a, calculated through first order in a,, and 
also through second order. The pattern at first order is similar to that in our 
previous examples: expansions in av(q’) and alat give reliable resuits at 
alI p’s; the expansion in qaL is off by almost a factor of four at 13 = 5.7, and 
still by almost 30% at 0 = 12. The second-order corrections significantly 
improve agreement between the data and the oy and um expansions. with 
errors ranging from a few percent at 0 = 5.7 to a few tenths of a percent 
at 0 = 12. The remaining discrepancy could easily be accounted for by 
uncalculated corrections of order o:, dthough again nonperturbative effects 
may play a role at the lowest 4’s. The second-order expansion with ofat 
gives results that are at least an order of magnitude worse than those from 
the other two expansions (at all p’s). By comparison with the others. the 
convergence of this expansion is very sluggish-a unambiguous symptom of 
a bad expansion parameter.@ 

the pathologies in all when m and n are small. making the q aI expansion more accurate 
than the a’v expansion for these loops. Neither expansion is aa accurate u expanding 

.,. - 111 *I ,,j,, 111 ,‘““‘L’ “1 u i .Ld LiWII t.\~“~wit*i*r;,,b. L lll.2 ,.I.,1 ,>L”CC”“IC grver 8”“U ,L>U,/> 
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Figure 3: Results for Creutz ratio ~22 at different couplings 0 from Monte 
Carlo simulations (circles), and from perturbation theory (using av(q’) (di- 
amonds), om(q’) (boxes), and qal (crosses)). The first plot shows pertur- 
bation theory through one-loop order, the second through two-Ioop order. 
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Figure 4: Results from perturbation theory (with uv(q*) (diamonds), 
a&q’) (boxes), and alat (crosses)) and Monte Carlo simulations (circles) 
for diagonal Creutz ratios Xn,n at 4 = 6.2. 

15 



I 

I I I I I I 

0.2 

x22 

0.1 

0 

MC ” 

7 o 

0 0 

0 
Q’ 

0 0.5 1 1.5 2 2.5 3 
q 

Figure 5: Results for the Creutz ratio ~22 from Monte Carlo simulations 
(line) and from the perturbation expansion in av(q) (diamonds) versus the 
scale q. 

In Fig. 4 we show two-loop results with each of the coupling constants for 
a variety of different Creutz ratios at ~3 = 6.2. The ov and czm expansions 
are again far superior for all of the ratios. 

We expect smaller momentum scales for Creutz ratios than for the loops 
themselves since many of the divergent contributions to loop expectation 
values cancel in the ratios. Our scale setting procedure indicates that q’ is 
1.09/a for ~22, and smaller for ratios involving larger loops. 

The importance of choosing a proper q’ is illustrated in Fig. 5, where 
the two-loop prediction for ,Y~Q has been reexpressed in terms of (rv(q) and 
plotted versus q. Taking q = x/a, for example, rather than q = q’ E 1.09/a 
results in a 10% error rather than a 1% error. This situation should be con- 

(when P is large) for all loops out to 8 x 8, the largest we checked. 
“Note that some al our results have been anticipated in the literature. The fact that 

perrurbative results lo; Creutz ratios are better behaved when expanded in terms oi a~ 
than when expanded in terms of =I ., was pointed out in [14]. The fact that perturb&w 
results lor Creutr ratios are better behaved when expanded in terms oi an 0, defined from 
any given ratio than when expanded in term8 of wl, was pointed out in [15]. 
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Figure 6: Results for - In W2, from Monte Carlo simulations (line) and from 
the perturbation expansion in av(q) (diamonds) versus the scale q. 
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wasted with that for -In W,, (Fig. 6). This quantity is significantly more 
ultraviolet than ~22, having q* = 2.65/a. Here our perturbative estimate 
degrades significantly if we use, say, q = l/a rather than q’ to set the scale of 
our expansion parameter. These examples illustrate the importance of our 
scale-setting procedure when high precision is required. Small departures 
from q’ are unimportant, at least for reasonably convergent series; but de- 
viations by factors of two or more can affect the reliabiity of a perturbative 
estimate. 

4 Mean field theory 

We have shown that perturbation theory works well when a proper coupling 
constant is used, but it is still important to understand the origins of the 
large mismatch between the lattice coupling and the continuum couplings. 
This mismatch is one of many examples where a large renormalization is 
required to relate a lattice quantir, to its continuum analogue. In this 
section we explore the connection between operators on the lattice and in 
the continuum. 

4.1 Tadpole improvement 

We usually design lattice operators by mapping them onto analogous oper- 
ators in the continuum theory. For gauge fields, this mapping is based upon 
the expansion 

U,(z) z e’agA”‘rl - 1 f iagA,(z). (21) 

This expansion seems plausible when the lattice spacing a is small. but 
it is misleading since further corrections do not vanish as powers of a in 
the quantum theory. Higher-order terms in the expansion of U, contain 
additional factors of gaA,, and the A,,%, if contracted with each other, 
generate ultraviolet divergences that precisely cancel the additional powers 
of a. Consequently these terms are suppressed only by powers of g2 (not 
a). and turn out to be uncomfortably large. These are the QCD tadpole 
contributions. 

The tadpoles spoil our intuition about the connection between lattice op- 
erators and the continuum, and so we should not be surprised if the lattice 
theory is not quite what we expected (because of large renormalizations). 
In order to regain this intuition we must refine the naive formula that con- 
nects the lattice operator to the continuum operator (Eq. 21). Consider the 
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vacuum expectation values of these operators. In the continuum, the expec- 
tation value of 1 + iagrl,(z) is 1. In the lattice theory, tadpole corrections 
renormalize the link operator so that its vacuum expectation value (in, say, 
Landau gauge) is considerably smaller than 1 (see Fig. 1). This suggests 
that the appropriate connection with continuum fields is more like 

U,(z) - ~(1 f&&(z)), 

where un, a number less than one, represents the mean value of the link. 
Gauge invariance requires that parameter ug enter as an overall constant.cg 

The mean-field parameter un depends upon the parameters of the the- 
ory. It can be measured easily in a simulation. Simply measuring the link 
expectation value gives zero since the link operators are gauge dependent. 
However relations such as Eq. 22 only make sense in smooth gauges, like 
Landau gauge. Thus one might define un to be the expectation value of the 
link operator in Landau gauge. A simpler, gauge-invariant definition uses 
the measured value of the plaquette: 

u,, z (~TrUP,~)“4. (23) 

Several other definitions are possible; alI give similar results. At p = 6, for 
example, un is 0.86 from the Landau-gauge link and 0.88 from the plaquette. 

Our improved relation, Eq. 22, between lattice and continuum gauge-field 
operators suggests that all links U, that appear in lattice operators should 
be replaced by CJ,,/u,-,, where un is measured in the simulation. The opera- 
tors U,/un are much closer in their behavior to their continuum analogues: 
large tadpole renormalizations are largely canceled out by the un (and the 
cancellation is nonperturbative since un is measured rather than calculated). 
This is the key ingredient in our tadpole-improvement procedure for lattice 
operators. Several illustrations follow in succeeding sections. 

“This formula follows simply from a renormalization-group argument. The tadpole 
contributions come mainly lrom the gauge-field modes with the highest momenta. Con- 
sequently the tadpoles ciln be removed by splitting the gauge field into ultraviolet (WV) 
and infrared (IR) parts (in a smooth gauge), and integrating out the UV parts. Averaging 
over the UV modes. the link operator is replaced by its IR part: 

Lru - ug esagA~’ z ug (1 + GagA;), 

where now the Taylor expansion of the exponential is quite convergent. Parameter u. 
.lI!y.!ni Il.,, :.., ~.T,<..,’ I’\’ ..~ ..*_. / :. 1. :,:,:. ,_:,I~, .., .,., . .,....: . . . . . .._ ,!. I::.!; 

operator functions as a gauge connection bath before and alter averaging. 
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4.2 OY from alal 

Our new prescription for building continuum-like operators suggests that 

~gluon = c &W’p,aq + h.c.). (24) 

is a better gluon action for lattice QCD. In particular, perturbation theory 
in i2 is much more like continuum perturbation theory (ie, no tadpoles). Of 
course this tadpole-improved action becomes the normal gluon action if we 
identify 

g = dtl4 

= s:,t/(~T~(Q.d). (25) 

This is a very important relationship; it tells us that the correct expansion 
parameter for the usual theory is jr2 rather than gk,. The difference is 
significant: for example, Sz z 1.7gi, at fl = 6 (using the measured value 
of the plaquette to relate the couplings). It is a big mistake to expand in 
powers of alar rather than cSlst E j*/4r.(” 

If ,mr mean-field analysis is correct, &I,., should be roughly equal to 
av(a/a). This is confirmed by perturbation theory which implies that 

4*/Q) = (iT$Lh) (l+ 0.513ov + O(a$)); (26) 

the difference between the two coupling constants is only a few percent at 
4 = 6. This formula provides a nonperturbative relationship between the 
bare lattice coupling al,+‘ and cry when measured values for the piaquette 
are used. 

Note that since the renormalization is multiplicative. its main effect is to 
rescale the argument of the running coupling constant. This suggests that 
we define (II, by 

uv(46.08/n) = a,.t (1 + O(o’,)) (27) 

‘“Our analysis of the gauge-field action ws anticipated by Parisi [16] who gives a simple 
anaiysLs for the compact abelian theory. To see what etTect the (UV-divergent) tadpoke 
have on infrared modes, we can split the gauge field in UV and IR components, and 
average over the CV part. Then the abelian gauge action becomes 

(g-? cos(gF:“” + SF;))“” = g-‘(cos(gF;;)) cos(gF;;) 

and the elTective cOuptin ior the IR modes is g2 divided by the UV part of the plaquette 
expectation value. 

20 



I / 1 I I I I / 1 

0.2 

da/a) 
0.1 

0 
0 
x 

8s x 

measured 0 
mean-field 0 

perturb&w x 

0’ I , I 

6 7 8 10 11 12 

Figure 7: Values of ov(r/a) as determined by measuring -ln(~TrUprw) 
(circles), by using a nonperturbative mean-field formula to relate it to the 
bare coupling (diamonds), and by using perturbation theory to relate it to 
the bare coupling (crosses). 

(since Av = 46.081&t), and then use two-loop evolution to determine av(q) 
for any other scale q. This provides a purely perturbative relation between 
(IV and a,,,. 

In Fig. 7 we compare the measured values of ay(rr/a) from Section 3 
with values obtained from the mean-field formula, Eq. 26, and from the 
perturbative formula, Eq. 27. Large coupling-constant renormalizations are 
automaticahy incorporated when (IV is measured, and so the validity of our 
mean-field analysis is tested by the extent to which the mean-field values 
agree with the measured values. All three methods produce results consis- 
tent up to corrections of order o$. The first two methods of determining 
oy are probably preferable to the perturbative formula at low 4’s since they 
incorporate some higher-order and nonperturbative effects. 

Our prescription for defining tadpole-improved lattice operators is crucial 
in ot,hrr. wlst,wi ~onto~fs. One ruamnle is in d+=fininE owrat~ors to rp’nrwent 
the chromoelectric and magnetic fields. These are needed for the operators 
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that remove O(a,az) errors from quark actions. The standard cloverleaf 
definitions, EC1 and B,i, invoive a products of four link operators, just like 
the plaquette (171. Thus the tadpole-improved operators, 

%I = W($r(&a.J) (‘W 

%I = W(~WQz+& (29) 

are almost twice as large at 0 = 6. The plaquette factors account for the bulk 
of the very large renormalizations found in perturbation theory for operators 
containing cloverleaf fields. Such operators play an important role in all 
formulations of heavy-quark dynamics; omitting the tadpole renormalization 
leads to severe underestimates of their effects. 

4.3 Improved Wilson fermions 

Our tadpole-improvement scheme provides valuable insights into the pat- 
tern of large renormalizations in lattice QCD, and it is generaLly trivial to 
implement. As another example consider the tadpole-improved action for 
Wilson quarks: 

s~=~~~+~C~((l+~~)~)~+.... 
I 0.11 

Again, this action is identical to the usual one if we relate the modified 
parameters, here the hopping parameter k, to the usual ones by resealing 
with ug: 

k = KU@ (31) 

The modified hopping parameter should be more continuum-like; for 
example, the tree-level value that gives massless quarks, & = l/8, should 
be roughly correct for interacting quarks as well, at least at high p’s, Thus 
an approximate nonperturbative formula for the critical value of the usual 
hopping parameter is 

4 = 1/8u,,. (32) 

This formula accounts for about 75% of the renormalization of the hopping 
parameter when 4 is large, as is evident if we compare the perturbative ex- 
pansions for the two sides. By combining these perturbative expansions, we 
obtain a tadpole-improved perturbation theory for the critical bare mass n, 
(where m, a F l/‘&, - 1. as in Section 3.2): 

m,a = -4 1 - (+TrCPlaq ( )“4) - 1.268av(l.O3/a) + O(o;). (33) 
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6m, a perturbative tadpole-improved 

Table 2: Mass renormalization for Wilson fermlons at different couplings p 
as computed using ordinary oy perturbation theory, tadpole-improved per- 
turbation theory, and Monte Carlo simulation. Also listed is the first- 
order perturbative correction to the mean-field estimate of m,, 6m,a = 
-1.268av( 1.03/a). 

Using the measured value of the plaquette operator, this formula should 
be more accurate than the purely perturbative formula used in Section 3.2 
since large tadpole renormalizations are being summed to all orders. Higher- 
order perturbative corrections should be smaller for the improved formula, 
as should nonperturbative effects. This seems to be the case as we show in 
Table 2, where the two predictions are compared with Monte Carlo data. 

In the continuum limit, the tadpole-improved lagrangian for massless 
quarks becomes 

2iigy,a’* t U(a). (34) 

This indicates that v’%+ is the lattice quantity that corresponds to the 
continuum quark field. Since iE zz l/8 when the quarks are massless, a 
tadpole-improved operator for massless quarks on the lattice is(” 

12 E *,/2. (35) 

This lattice operator has roughly the same normalization as the continuum 
held; in particular, there are no large tadpole contributions to the renormal- 
ization constant relating them. This is important in designing new lattice 
operators involving quark fields. For example, if one wants matrix elements 
of the continuum current &@-&. then one should simulate with the lattice 
operator 

&‘yS$ = 4&‘ySqb. (36) 

“‘This result is only valid for K z t+. Away Irom sic, 6 becomes [18, 41 

G E (I - 3r/4+)“’ *. 

?lote khat the K dependence here is quite different from rhar oi the commonly used (but 
incorrect) \/T;dl. 
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Our procedure differs somewhat from common practice. Frequently the 
quark renormalization factor is taken to be 6 for massless quarks. rather 
than the factor G = l/2 that we use. The former factor differs signifi- 
cantly from I/ 2 uniess 0 is quite large. In our mean-field analysis, the con- 
ventional factor 6 is in effect divided by &. This additional factor 
removes the bulk of the large tadpole corrections usually found in calcula- 
tions of renormalization constants for quark operators. We have verified this 
for a variety of two, three and four-quark operators. Our results are pre- 
sented in Table 3.(‘* There we present the renormalization factors for each 
operator (continuum divided by lattice) as computed in perturbation the- 
ory, and in perturbation theory but with the (nonperturbative) mean-field 
factors removed. Perturbative expansions are much improved by extract- 
ing the mean-field factors, particularly for operators with lots of fields (or 
cloverleaf fields, as in the last table entry).(‘s 

The results here are all for massless or nearly massless quarks. Tadpole. 
improved operators and actions for heavy quarks are discussed in [18, 41, for 
Wilson quarks, and in (221, for nonrelativistic quarks (NRQCD). 

5 Implications for Scaling 

A key issue in QCD concerns the onset of asymptotic or perturbative scaling: 
how small must the lattice spacing be before the variation of the coupling 
constant is perturbative. The variation of the coupling with changing lat- 
tice spacing is determined by the beta function, which, at short distances, 
is a perturbative quantity like any other. If perturbation theory success- 
fully predicts a range of short-distance quantities, it is likely that it also 
correctly predicts the beta function. Thus our results in Section 3 provide 
indirect evidence in support of perturbative scaling. Our results also test 
the scaling properties of the coupling constant directly. This is because at 

“‘These results are for Wilson parameter r = 1; very similar results arise for r = l/2. 

(13The continuum operators used in this comparison were defined using the m scheme. 
Our choice of normalization scale, p = I/a. was somewhat empirical; a more system- 
atic determination of the appropriate scale is possible using a variation of the techniques 
discussed in Section 2. Also, there is another obvious nonperturbative procedure for nor- 
malizing the operator for lattice quark% The quark field’s normalization should be roughly 
the square root of the normalization of either the vector or axial-vector current since these 
currents are conserved (or partially conserved). Inspe~uon of our table indicates that us- 
ing the averaqe normalization of the two currents to aehne the quark normalizarion gives 
even better results than those shown in the table. 
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operator 
ve 1191 

WY% i19j 
h”@ P91 

gy$ 1191 
[191 

mw~l P-4 
d+Wbl [201 
&WI [201 

Go++ 11 [211 
T?o-++ [211 
iml!b rl [211 
mo,ll, rlf [Xl 

perturb&w 
Cl- 1.39avi 2K, 

tadpole-improved 
(1 - 0.03 av) /4 

(1-2.40&j 2~: (1 - 1.03av) /4 
(I- 2.19av) 2K, (1 - 0.82 av) /4 
(1- 1.68av) 2K(, (1 - 0.31 av) /4 
(1 - 1.80 crv) 2x, (1 - 0.44av)/4 
(1 - 2.78 CIV) (2kc)l.’ (1 - 0.73~) /8 
(I-2.89av)(2~,)‘.’ (l-0.84av)/8 
(1 - 2.76av)(2#’ (1 - 0.71av)/8 
(1 - 3.810~)(2~,)’ (l- 1.08~)/16 
(1 - 3.66crv)(2~,)’ (1 -0.93~)/16 
(1 - 3.78olv)(21# (1 - l.O5av)/16 
(1 - 3.55av)(21# (1 - 0.83~)/16 

Table 3: Renormalization constants relating continuum (mat p = l/a) and 
lattice operators for massless quarks. Results are for the ratio of continuum 
to lattice matrix elements, both without and with tadpole factors removed. 

each 0 we measure the coupling crv at Q = 3.41/a, using data for the very 
ultraviolet-divergent plaquette, and then we perturbatively evolve cz~ down 
to scales ranging from 0.4/a to 2.8/a to compute estimates for a variety of 
less ultraviolet quantities. (Note that av at 0 = 6 increases by more than 
50% when evolving from 4 = 3.41/a down to Q = 1.09/a, the scale for Creutz 
ratio ~22.) The success of our many perturbative estimates is compelling 
evidence that coupling-constant evolution is mostly perturbative for ail 0’s 
down to 5.7. and possibly even for lower one~.(‘~ Of course, this discussion 
only applies to the (IV and am definitions of the coupling; crlat is poorly 
behaved, but also largely irrelevant given our new perturbative techniques. 

Our conclusion, that scaling is asymptotic even at 0 = 5.7, contradicts 
standard lore. This lore derives from studies of scale invariant ratios of Alat 
with physical quantities like the deconfining temperature T, or the string 
tension V. Such ratios, which should become independent of 4 at the onset 
of asymptotic scaling, show considerable variation with p for p’s less than 

“‘This result is supported by recent calculations 01 the beta function itself for a range 
of scales using & finite-size scaling technique in SUZ gauge theory[23]. Thii study probes 
different scales by examining a single quantity on a swies of lattices with different lattice 
spacinw Our study probes different scales on single lattices by examining a variety al 
qmmle~. some Inore “l‘rS”KJLe‘ tkl11 oulers. in boln cases Lk rvoiutmn 0, ,*te coup,mg 
cons‘a”t is tracked over a large range of scales. 
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6.2. This is illustrated by the upper plots in Fig. 8. These show the IP-1S 
mass splitting U4 for the U, [24] and T [25] meson families divided by hi,,, 
as well as fi/AIar 1261, for a range of D’s. Scaling violations of order 30-40% 
are readily apparent between 4 = 5.7 to a = 6.1. However, the situation 
changes completely if we replace the Arat’s in these ratios by Av’s determined 
(perturbatively) from the cry’s we used in Section 3. When compared with 
A”, the data are consistent with asymptotic scaling to within a few percent. 

Exact scaling is not expected for any physical quantity. There are cer- 
tainly finite-lattice-spacing errors in each of the measurements we use here. 
These errors have been analyzed carefully for the T data [4]; they result in 
roughly 10% scaling violation over the range shown. Errors for the other 
two quantities are probably smaller since T’s are the smallest mesons. Note 
that the lP-IS splitting in quarkonium mesons is one of few hadronic mea- 
surements that is suitable for studying scaling. This is because the splitting 
is almost completely insensitive to the heavy-quark’s mass, and so depends 
only upon the coupling constant. (This is also why the 11 results shown are 
nearly indistinguishable from the T results.) 

The evidence suggests that physically interesting quantities like mass 
splittings or the string tension scale perturbativeiy even at low 0’s. The 
problem with the standard lore is that alsr does not scale perturbatively (at 
least thrcdgh two-loop order). This is clear from our studies o xerturbation 
theory. These studies also indicate that renormalized couplings Iike a” are 
perturbative, and this is why the ratios with Av scale so well. Of course, 
ratios of physical quantities should scabs properly as well, and they do (see 
Fig. 9). 

It has been apparent for some time that the deconfining temperature 
scales better when analyzed in terms of a modified coupling constant sim- 
ilar to ours.[27] Now it is apparent that the modified coupling constant is 
just a continuum coupling constant like oy. Furthermore it is clear that the 
failure of scaling was intimately related to the lack of convergence of per- 
turbation theory for short-distance quantities like xc or ,yrr. Both problems 
are resolved by replacing QI., with av. 

6 Summary 

The use of lattice perturbation theory in conjunction with simulations has 
been hampered by two problems: 
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Figure 9: Ratios of the square root of the string tension o with the lP-1S 
mass splittings AM for $‘s and Y’s. 

. expansions in powers of the bare lattice coupling 01~~ consistently un- 
derestimate perturbative effects, sometimes by factors of 2 or 4; 

. expansions for many quantities (and particularly renormalization con- 
stants for lattice operators) have large coefficients due to tadpole dia- 
grams and consequently converge poorly, if at all. 

We have addressed both problems in this paper. We have shown here that 
lattice perturbation theory works well when a proper coupling constant is 
used; and it can be made about as convergent as the continuum theory by 
systematically removing tadpole contributions. 

The first problem is remedied by replacing alsc with a renormalized cow 
pling constant like av(q*), where scale q’ is customized (in a predetermined 
way) to the quantity under study. The coupling constant av is defined in 
terms a physical quantity, the heavy-quark potential, and it can either be 
measured (Section 3) or it can be determined from the bare lattice cou- 
pling alar using formulas from mean-field theory (Section 4.2). Perturbation 
theory, when expressed in terms of av(q’). is remarkably effective even at 
0 = 5.7. 
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The second problem. large tadpole-induced renormalizations. is reme- 
died by simple redefinitions of the basic operators used to define the lattice 
theory. Every U, in a naive lattice operator is replaced with U,,/uu, where uu 
is a measured constant representing the mean value of the link (Section 4); 
and every renormalised low-mass (Wilson) quark field Jz;;;li, is replaced 
by +/2. The new operators obtained this way are resealed versions of the 
naive operators. Their normalizations are very close to those of their con- 
tinuum analogues: renormalization constants for composite operators built 
from these tadpole-improved operators have perturbative expansions that 
are far more convergent. Tadpole improvement is essential for operators, 
like the cloverleaf operators for F,,,, that involve many links; without it nor- 
malizations are wrong by as much as a factor of 2, and perturbation theory 
becomes useless. 

Our examples suggest that lowest-order perturbation theory in (IV gives 
results for short-distance quantities that are typically correct to within lo- 
20% at 0 = 6. Expansions in orat can be off by factors 2 or 3 at the same 
p. Adding in higher-order corrections usually reduces errors by factors of 
2-5 for av expansions, and by very little for atar expansions. In many 
situations, (IV expansions can be made still more accurate through tadpole- 
improvement, where powers of the mean-field parameter uo are factored 
out of the expansion leaving behind a more convergent series. While our 
procedure for determining the proper scale q’ for the coupling consistently 
leads to excellent expansions, expansions in ov(r/a) for quantities defined 
over one or two lattice spacings usually give errors that are within a factor 
of 2-3 of those obtained with ov(q’). 

The fact that perturbation theory seems to be working at 4 = 5.7 implies 
that asymptotic or perturbative scaling should also work. We verified this 
here, for a number of physical quantities, by comparing their dependence 
on 4 with that of the scale parameter AV for the renormalized coupling a~; 
scale invariant ratios of these quantities with AV (as opposed to Alar) showed 
little variation all the way down to fi = 5.7. These results suggests that the 
lattice spacings used in current simulations are small enough for reliable 
studies of QCD. Indeed. if anything, they are unnecessarily small. It is 
probably much more cost effective to simulate QCD at fl = 5.7, while re- 
moving the U(n,aa) errors that are important by correcting the action. Pre- 
vious efforts at improving lattice actions have not been too successful: but 
these relied upon the use of expansions in orat. and naive lattice operators. 
II IS nkely Chat llre use or UI/ pertruoatmn tneory, and tadpole-improved 
operators to correct the action will be much more successful. The poten- 
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P 1 Perturbation Theory M. C. 
Data - a.1 q&q’) 49’) 

5.7 1 -0.46 -0.93 -1.12 -1.04 
6 -0.43 -0.78 -0.91 -0.80 

6.1 -0.43 -0.75 -0.86 

t 

-0.78 
6.3 -0.41 -0.70 -0.79 -0.70 

Table 5: am,-the critical quark mass m, for Wilson quarks with ~1.0, 
calculated in first order perturbation theory and by Monte Carlo simulation 
for various 4’s. Statistical errors in the simulation data are of order 2 in the 
last digit quoted. 

tial savings in computer resources make it imperative that this option be 
thoroughly investigated. 

Appendix 

This appendix presents data for some of the figures in tabular form. 

Table 4: (1 - $TrU) (Landau gauge)-the expectation value of the trace 
of a link in Landau gauge, calculated in first order perturbation theory and 
by Monte Carlo simulation for various p’s, Statistical errors in all data 
presented are of order one in the last digit quoted or smaller. 
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d I First Order Second Order 
war “MS W 

5.7 1 0.10160 0.29790 0.40100 
6 0.09652 0.23170 0.28560 

6.2 0.09341 0.20840 0.24990 
9 0.06435 0.09749 0.10490 
12 0.04826 0.06399 0.06703 
18 0.03217 0.03826 0.03930 

w,r MS OV 

0.15429 O.&S1 0.35347 
0.14407 0.25225 0.26150 
0.13794 0.22497 0.23146 
0.08548 0.10112 0.10167 
0.06015 0.06556 0.06570 
0.03746 0.03882 0.03885 

M. C. 
Data 

0.37343 
0.26558 
0.23317 
0.10173 
0.06574 
0.03885 

Table 6: xzz-the expectation value of the Creutz ratio ~2s calculated in 
first and second order perturbation theory and by Monte Carlo. 

;1~?l::t”ri2;~h~~;;~ 1 okz7 
48 

! 0.13794 0.2249 
3 0.05207 0.09467 0.10312 0.113 r- 4 0.02525 0.06283 0.07121 0.06783 
5 0.01512 0.03881 0.04780 0.04949 

Table 7: X..,-diagonal Creutz ratios xn,,, as computed in second-order 
perturbation theory and by Monte Carlo simulation at fl = 6.2. 

aq 1 0.5 0.8 aq’ = 1.09 1.5 2.0 3.0 
tzz / 0.174 0.227 0.231 0.228 0.222 0.212 

Table 8: Perturbative predictions for Creutz ratio ~2s using expansion pa- 
rameter uv(q) with various q’s at /3 = 6.2. Xlonte Carlo simulation gives 
xzz = 0.233. 

(1 ‘I j 1 ‘2 “q’ = 2.65 3 -I 6 
- 1” wzz 1 1.074 1.446 1.485 1.492 1.494 1.474 

Table 9: Perturbative predictions for -In W 22 
ter av(q) with various q’s at 9 = 6.2. 

using expansion parame- 
!Jonte Carlo simulation gives 

LV22 = 1.52T. 

31 



3 1 measured mean field perturbative 
5.7 ( 0.188 0.168 0.148 
6 0.156 0.145 0.134 

6.2 0.143 0.135 0.127 
9 0.074 0.073 0.072 
12 0.050 0.050 0.049 
18 0.031 0.030 0.030 

Table 10: av(r/o) as measured (from -In IV,,), as computed from the bare 
lattice coupling using nonperturbative mean-field theory, and as computed 
in perturbation theory. 

Y 1 AM,!./A\,, AM-r/h,, fitha, / AM<,fAv AMrfAv &/i;lhv 
5.7 I 130(9) 136( 15) 134(l) ) 1.36(9) 1.42(15) 1.40(l) 
5.8 120(l) 1.40(l) 
5.9 105(6) 110(l) 1.31(7) 1.37(l) 
6.0 105(4) 105( 1) 1.36(5) 1.38(l) 
6.1 9’36) 1.31(7) 

Table 11: Scale invariant ratios for the lP-IS mass differences Ah{ for d’s 
and T’s and the square root of the string tension o. 
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